Worksheet
Combinations of Capacitors
Printer Friendly Version
Given that the battery is 40 V and that C
_{1}
= 2 µF, C
_{2}
= 6 µF, C
_{3}
= 0.5 µF, and V
_{1}
= 10 V.
Find the values for C
_{x}
, Q
_{x}
, and V
_{x}
How much charge is on C
_{1}
?
How much charge is on C
_{2}
?
What is the voltage drop across C
_{2}
?
What is the voltage drop across C
_{3}
?
What is the voltage drop across C
_{x}
?
How much charge is on C
_{3}
?
How much charge is on C
_{x}
?
What is C
_{x}
?
How much total energy is stored in the circuit?
What is the total capacitance present in this circuit?
Related Documents
Lab:
CP -
Series and Parallel Circuits
Labs -
Aluminum Foil Parallel Plate Capacitors
Labs -
Electric Field Mapping
Labs -
Electric Field Mapping 2
Labs -
Mass of an Electron
Labs -
Parallel and Series Circuits
Labs -
RC Time Constants
Labs -
Resistance and Resistivity
Labs -
Resistance, Gauge, and Resistivity of Copper Wires
Labs -
Telegraph Project
Labs -
Terminal Voltage of a Lantern Battery
Labs -
Wheatstone Bridge
Resource Lesson:
RL -
A Comparison of RC and RL Circuits
RL -
Ampere's Law
RL -
An Introduction to DC Circuits
RL -
Capacitors and Dielectrics
RL -
Continuous Charge Distributions: Charged Rods and Rings
RL -
Continuous Charge Distributions: Electric Potential
RL -
Coulomb's Law: Beyond the Fundamentals
RL -
Coulomb's Law: Suspended Spheres
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Dielectrics: Beyond the Fundamentals
RL -
Electric Field Strength vs Electric Potential
RL -
Electric Fields: Parallel Plates
RL -
Electric Fields: Point Charges
RL -
Electric Potential Energy: Point Charges
RL -
Electric Potential: Point Charges
RL -
Electricity and Magnetism Background
RL -
Electrostatics Fundamentals
RL -
Famous Experiments: Millikan's Oil Drop
RL -
Filaments
RL -
Gauss' Law
RL -
Kirchhoff's Laws: Analyzing Circuits with Two or More Batteries
RL -
Kirchhoff's Laws: Analyzing DC Circuits with Capacitors
RL -
LC Circuit
RL -
Magnetic Field Along the Axis of a Current Loop
RL -
Magnetism: Current-Carrying Wires
RL -
Meters: Current-Carrying Coils
RL -
Parallel Plate Capacitors
RL -
RC Time Constants
RL -
Shells and Conductors
RL -
Spherical, Parallel Plate, and Cylindrical Capacitors
RL -
Torque on a Current-Carrying Loop
Review:
REV -
Drill: Electrostatics
REV -
Electrostatics Point Charges Review
Worksheet:
APP -
The Birthday Cake
APP -
The Circuit Rider
APP -
The Cycle Shop
APP -
The Electrostatic Induction
CP -
Coulomb's Law
CP -
DC Currents
CP -
Electric Potential
CP -
Electric Power
CP -
Electrostatics: Induction and Conduction
CP -
Ohm's Law
CP -
Parallel Circuits
CP -
Power Production
CP -
Power Transmission
CP -
RIVP Charts #1
CP -
RIVP Charts #2
CP -
Series Circuits
NT -
Brightness
NT -
Electric Potential vs Electric Potential Energy
NT -
Electrostatic Attraction
NT -
Light and Heat
NT -
Lightning
NT -
Parallel Circuit
NT -
Photoelectric Effect
NT -
Potential
NT -
Series Circuits
NT -
Shock!
NT -
Van de Graaff
NT -
Water Stream
WS -
Capacitors - Connected/Disconnected Batteries
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Coulomb Force Extra Practice
WS -
Coulomb's Law: Some Practice with Proportions
WS -
Electric Field Drill: Point Charges
WS -
Electric Fields: Parallel Plates
WS -
Electric Potential Drill: Point Charges
WS -
Electrostatic Forces and Fields: Point Charges
WS -
Electrostatic Vocabulary
WS -
Introduction to R | I | V | P Charts
WS -
Kirchhoff's Laws: DC Circuits with Capacitors
WS -
Kirchhoff's Laws: Sample Circuit
WS -
Parallel Reading - The Atom
WS -
Resistance, Wattage, and Brightness
WS -
Standard Model: Particles and Forces
TB -
34A: Electric Current
TB -
35A: Series and Parallel
TB -
Advanced Capacitors
TB -
Basic Capacitors
TB -
Basic DC Circuits
TB -
Electric Field Strength vs Electric Potential
TB -
Multiple-Battery Circuits
TB -
Textbook Set #6: Circuits with Multiple Batteries
PhysicsLAB
Copyright © 1997-2019
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton