CP Workbook
Tensions and Equilibrium
Printer Friendly Version
Refer to the following information for the next question.
The rock hangs at rest from a single string. Only two forces act on it, the upward tension
T
of the string, and the downward pull of gravity
W
.
The forces are equal in magnitude and opposite in direction. Net force on the rock is
zero
greater than zero
Refer to the following information for the next question.
Here the rock is suspended by 2 strings. Tension in each string acts in a direction along the string. We'll show tension of the left string by vector A, and tension of the right string by vector B.
The resultant of
A
and
B
is found by the parallelogram rule, and is shown by the dashed vector. Note it has the same magnitude as
W
, so the net force on the rock is
zero
greater than zero
Refer to the following information for the next question.
Consider strings at unequal angles. The resultant
A + B
is still equal and opposite to
W
, and is shown by the dashed vector. Construct the appropriate parallelogram to produce this resultant. Show the relative magnitudes of
A
and
B
Tension in A is ____ the tension in B.
less than
equal to
greater than
Refer to the following information for the next question.
Repeat the procedure for the arrangement shown below.
Here tension is greater in rope
A
B
Refer to the following information for the next three questions.
Construct vectors
A
and
B
for the cases below. First draw a vector
W
, then the parallelogram that has equal and opposite vector
A + B
as the diagonal. Then write an equation relating the approximate magnitudes of
A
and
B
.
Related Documents
Lab:
Labs -
2-Meter Stick Readings
Labs -
Acceleration Down an Inclined Plane
Labs -
Addition of Forces
Labs -
Circumference and Diameter
Labs -
Coefficient of Friction
Labs -
Coefficient of Friction
Labs -
Conservation of Momentum in Two-Dimensions
Labs -
Cookie Sale Problem
Labs -
Density of a Paper Clip
Labs -
Determining the Distance to the Moon
Labs -
Determining the Distance to the Sun
Labs -
Eratosthenes' Measure of the Earth's Circumference
Labs -
Falling Coffee Filters
Labs -
Force Table - Force Vectors in Equilibrium
Labs -
Home to School
Labs -
Indirect Measurements: Height by Measuring The Length of a Shadow
Labs -
Indirect Measures: Inscribed Circles
Labs -
Inelastic Collision - Velocity of a Softball
Labs -
Inertial Mass
Labs -
Introductory Simple Pendulums
Labs -
Lab: Rectangle Measurements
Labs -
Lab: Triangle Measurements
Labs -
LabPro: Newton's 2nd Law
Labs -
Loop-the-Loop
Labs -
Marble Tube Launcher
Labs -
Mass of a Rolling Cart
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Quantized Mass
Labs -
Relationship Between Tension in a String and Wave Speed
Labs -
Relationship Between Tension in a String and Wave Speed Along the String
Labs -
Static Equilibrium Lab
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: LabPro Data for Hooke's Law
Labs -
Terminal Velocity
Labs -
The Size of the Moon
Labs -
The Size of the Sun
Labs -
Video LAB: A Gravitron
Labs -
Video LAB: Ball Re-Bounding From a Wall
Labs -
Video Lab: Falling Coffee Filters
Resource Lesson:
RL -
Advanced Gravitational Forces
RL -
Air Resistance
RL -
Air Resistance: Terminal Velocity
RL -
Basic Trigonometry
RL -
Basic Trigonometry Table
RL -
Curve Fitting Patterns
RL -
Dimensional Analysis
RL -
Forces Acting at an Angle
RL -
Freebody Diagrams
RL -
Gravitational Energy Wells
RL -
Inclined Planes
RL -
Inertial vs Gravitational Mass
RL -
Linear Regression and Data Analysis Methods
RL -
Metric Prefixes, Scientific Notation, and Conversions
RL -
Metric System Definitions
RL -
Metric Units of Measurement
RL -
Newton's Laws of Motion
RL -
Non-constant Resistance Forces
RL -
Potential Energy Functions
RL -
Properties of Friction
RL -
Properties of Lines
RL -
Properties of Vectors
RL -
Significant Figures and Scientific Notation
RL -
Springs and Blocks
RL -
Springs: Hooke's Law
RL -
Static Equilibrium
RL -
Systems of Bodies
RL -
Tension Cases: Four Special Situations
RL -
The Law of Universal Gravitation
RL -
Universal Gravitation and Satellites
RL -
Universal Gravitation and Weight
RL -
Vector Resultants: Average Velocity
RL -
Vectors and Scalars
RL -
What is Mass?
RL -
Work and Energy
Review:
REV -
Honors Review: Waves and Introductory Skills
REV -
Physics I Review: Waves and Introductory Skills
REV -
Test #1: APC Review Sheet
Worksheet:
APP -
Big Fist
APP -
Family Reunion
APP -
Puppy Love
APP -
The Antelope
APP -
The Box Seat
APP -
The Dognapping
APP -
The Jogger
APP -
The Pool Game
APP -
War Games
CP -
Action-Reaction #1
CP -
Action-Reaction #2
CP -
Equilibrium on an Inclined Plane
CP -
Falling and Air Resistance
CP -
Force and Acceleration
CP -
Force and Weight
CP -
Force Vectors and the Parallelogram Rule
CP -
Freebody Diagrams
CP -
Gravitational Interactions
CP -
Incline Places: Force Vector Resultants
CP -
Incline Planes - Force Vector Components
CP -
Inertia
CP -
Inverse Square Relationships
CP -
Mobiles: Rotational Equilibrium
CP -
Net Force
CP -
Newton's Law of Motion: Friction
CP -
Sailboats: A Vector Application
CP -
Satellites: Circular and Elliptical
CP -
Static Equilibrium
CP -
Vectors and Components
CP -
Vectors and Resultants
CP -
Vectors and the Parallelogram Rule
NT -
Acceleration
NT -
Air Resistance #1
NT -
An Apple on a Table
NT -
Apex #1
NT -
Apex #2
NT -
Falling Rock
NT -
Falling Spheres
NT -
Friction
NT -
Frictionless Pulley
NT -
Gravitation #1
NT -
Head-on Collisions #1
NT -
Head-on Collisions #2
NT -
Ice Boat
NT -
Rotating Disk
NT -
Sailboats #1
NT -
Sailboats #2
NT -
Scale Reading
NT -
Settling
NT -
Skidding Distances
NT -
Spiral Tube
NT -
Tensile Strength
NT -
Terminal Velocity
NT -
Tug of War #1
NT -
Tug of War #2
NT -
Two-block Systems
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Calculating Force Components
WS -
Calculating Vector Resultants
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Circumference vs Diameter Lab Review
WS -
Combining Kinematics and Dynamics
WS -
Data Analysis #1
WS -
Data Analysis #2
WS -
Data Analysis #3
WS -
Data Analysis #4
WS -
Data Analysis #5
WS -
Data Analysis #6
WS -
Data Analysis #7
WS -
Data Analysis #8
WS -
Density of a Paper Clip Lab Review
WS -
Dimensional Analysis
WS -
Distinguishing 2nd and 3rd Law Forces
WS -
Force vs Displacement Graphs
WS -
Frames of Reference
WS -
Freebody Diagrams #1
WS -
Freebody Diagrams #2
WS -
Freebody Diagrams #3
WS -
Freebody Diagrams #4
WS -
Graphical Relationships and Curve Fitting
WS -
Indirect Measures
WS -
Introduction to Springs
WS -
Kinematics Along With Work/Energy
WS -
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
Mastery Review: Introductory Labs
WS -
Metric Conversions #1
WS -
Metric Conversions #2
WS -
Metric Conversions #3
WS -
Metric Conversions #4
WS -
net F = ma
WS -
Practice: Vertical Circular Motion
WS -
Properties of Lines #1
WS -
Properties of Lines #2
WS -
Ropes and Pulleys in Static Equilibrium
WS -
Scientific Notation
WS -
Significant Figures and Scientific Notation
WS -
Standard Model: Particles and Forces
WS -
Static Springs: The Basics
WS -
Vocabulary for Newton's Laws
WS -
Work and Energy Practice: Forces at Angles
TB -
Systems of Bodies (including pulleys)
TB -
Work, Power, Kinetic Energy
TB -
Working with Vectors
TB -
Working with Vectors
REV -
Math Pretest for Physics I
Paul G. Hewitt
Copyright © 1984-2005
All rights reserved.
Used with written
permission.
PhysicsLAB
HTML conversion
Copyright © 1997-2017
Catharine H. Colwell
All rights reserved.
Mainland High School
Daytona Beach, FL 32114