CP Workbook
Action-Reaction #2
Printer Friendly Version
Refer to the following information for the next thirteen questions.
Nellie Newton holds an apple weighing one newton at rest on the palm of her hand. The force vectors shown are the forces that act on the apple.
To say the weight of the apple is 1 N is to say that a downward gravitational force of 1 N is exerted on the apple by
the earth
her hand
Nellie's hand supports the apple with normal force N, which acts in a direction opposite to W. We can say N
equals W
has the same magnitude as W
Since the apple is at rest, the net force on the apple is
zero
nonzero
N is equal and opposite to W. We ____ say that N and W comprise an action-reaction pair.
can
cannot
The reason is because action and reaction always
act on the same object
act on different objects
and here we see N and W
both acting on the apple
acting on different objects
In accord with the rule, "If ACTION is A acting on B, then REACTION is B acting on A," if we say action is the earth pulling down on the apple, reaction is
the apple pulling upon the earth
Nellie's hand pushing up on the apple
To repeat for emphasis, we see that N and W are equal and opposite to each other
and comprise an action-reaction pair
but do not comprise an action-reaction pair
Another pair of forces is N [shown] and the downward force of the apple against Nellie's hand [not shown]. This force pair ____ an action-reaction pair.
is
is not
Suppose Nellie now pushes upward on the apple with a force of 2 N. The apple
is still in equilibrium
accelerates upward
and compared to W, the magnitude of N is
the same
twice
not the same, and not twice
Once the apple leaves Nellie's hand, N is
zero
still twice the magnitude of W
and the net force on the apple is
zero
only W
still W - N, a negative force
Related Documents
Lab:
Labs -
Coefficient of Friction
Labs -
Coefficient of Friction
Labs -
Conservation of Momentum in Two-Dimensions
Labs -
Falling Coffee Filters
Labs -
Force Table - Force Vectors in Equilibrium
Labs -
Inelastic Collision - Velocity of a Softball
Labs -
Inertial Mass
Labs -
LabPro: Newton's 2nd Law
Labs -
Loop-the-Loop
Labs -
Mass of a Rolling Cart
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Relationship Between Tension in a String and Wave Speed
Labs -
Relationship Between Tension in a String and Wave Speed Along the String
Labs -
Static Equilibrium Lab
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: LabPro Data for Hooke's Law
Labs -
Terminal Velocity
Labs -
Video LAB: A Gravitron
Labs -
Video LAB: Ball Re-Bounding From a Wall
Labs -
Video Lab: Falling Coffee Filters
Resource Lesson:
RL -
Advanced Gravitational Forces
RL -
Air Resistance
RL -
Air Resistance: Terminal Velocity
RL -
Forces Acting at an Angle
RL -
Freebody Diagrams
RL -
Gravitational Energy Wells
RL -
Inclined Planes
RL -
Inertial vs Gravitational Mass
RL -
Newton's Laws of Motion
RL -
Non-constant Resistance Forces
RL -
Properties of Friction
RL -
Springs and Blocks
RL -
Springs: Hooke's Law
RL -
Static Equilibrium
RL -
Systems of Bodies
RL -
Tension Cases: Four Special Situations
RL -
The Law of Universal Gravitation
RL -
Universal Gravitation and Satellites
RL -
Universal Gravitation and Weight
RL -
What is Mass?
RL -
Work and Energy
Worksheet:
APP -
Big Fist
APP -
Family Reunion
APP -
The Antelope
APP -
The Box Seat
APP -
The Jogger
CP -
Action-Reaction #1
CP -
Equilibrium on an Inclined Plane
CP -
Falling and Air Resistance
CP -
Force and Acceleration
CP -
Force and Weight
CP -
Force Vectors and the Parallelogram Rule
CP -
Freebody Diagrams
CP -
Gravitational Interactions
CP -
Incline Places: Force Vector Resultants
CP -
Incline Planes - Force Vector Components
CP -
Inertia
CP -
Mobiles: Rotational Equilibrium
CP -
Net Force
CP -
Newton's Law of Motion: Friction
CP -
Static Equilibrium
CP -
Tensions and Equilibrium
NT -
Acceleration
NT -
Air Resistance #1
NT -
An Apple on a Table
NT -
Apex #1
NT -
Apex #2
NT -
Falling Rock
NT -
Falling Spheres
NT -
Friction
NT -
Frictionless Pulley
NT -
Gravitation #1
NT -
Head-on Collisions #1
NT -
Head-on Collisions #2
NT -
Ice Boat
NT -
Rotating Disk
NT -
Sailboats #1
NT -
Sailboats #2
NT -
Scale Reading
NT -
Settling
NT -
Skidding Distances
NT -
Spiral Tube
NT -
Tensile Strength
NT -
Terminal Velocity
NT -
Tug of War #1
NT -
Tug of War #2
NT -
Two-block Systems
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Calculating Force Components
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Combining Kinematics and Dynamics
WS -
Distinguishing 2nd and 3rd Law Forces
WS -
Force vs Displacement Graphs
WS -
Freebody Diagrams #1
WS -
Freebody Diagrams #2
WS -
Freebody Diagrams #3
WS -
Freebody Diagrams #4
WS -
Introduction to Springs
WS -
Kinematics Along With Work/Energy
WS -
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
net F = ma
WS -
Practice: Vertical Circular Motion
WS -
Ropes and Pulleys in Static Equilibrium
WS -
Standard Model: Particles and Forces
WS -
Static Springs: The Basics
WS -
Vocabulary for Newton's Laws
WS -
Work and Energy Practice: Forces at Angles
TB -
Systems of Bodies (including pulleys)
TB -
Work, Power, Kinetic Energy
Paul G. Hewitt
Copyright © 1984-2005
All rights reserved.
Used with written
permission.
PhysicsLAB
HTML conversion
Copyright © 1997-2017
Catharine H. Colwell
All rights reserved.
Mainland High School
Daytona Beach, FL 32114