Worksheet
Practice: Uniform Circular Motion
Printer Friendly Version
These problems will allow you to practice your knowledge of situations involving uniform circular motion. Each situation begins with a set of givens and is followed by a series of questions. Make sure that your first submissions are, as always, as accurate as possible.
Refer to the following information for the next six questions.
A coin of mass 25 grams is placed 20 cm from the center on a rotating turntable. The coin does not slip while the platform rotates at a constant angular speed of 40 rpm.
What is the magnitude of the coin's linear velocity in m/sec?
Which of the following answer correctly illustrates the direction of the coin's linear velocity at the instant it is at the position shown in the diagram above?
What would be the magnitude of the acceleration experienced by the coin?
Which of the following answer correctly illustrates the direction of the coin's acceleration at the instant it is at the position shown in the diagram above?
If the coefficient of static friction between the coin and the surface is 0.65, what would the greatest rotational speed the turntable could acquire and still have the coin stay in place?
If the first coin were to be replaced with a larger coin made of the same material, which of the following statements is true?
the larger coin will fly off at a tangent
the larger coin will remain at rest as well
the larger coin will fly off along the radius
the larger coin will spiral in towards the center of the turntable
Refer to the following information for the next five questions.
You have completed a lab using a conical pendulum whose length was 75 cm.
During the lab you collected the following data:
mass of whirled rubber ball = 25 grams
40-second trial #1: 50 rev
40-second trial #2: 52 rev
40-second trial #3: 51 rev
mass of suspended washers = 60 grams
A freebody diagram of the rubber ball will show what two forces acting on the ball?
During the experiment, the suspended washers supplied the tension. Using the fact that mg = T cos θ, at what angle was the ball being twirled?
What was the average frequency for your trials?
Using the fact that the actual twirling radius was r = L sin θ, what was the magnitude of the rubber ball's average velocity during your trials?
If another series of trials, with the same rubber ball and washers, had been performed but with a shorter radius would you anticipate the tangential velocity of the ball would increase or decease?
Refer to the following information for the next four questions.
A 400 meter radius curve is banked at 12º.
What would be the two forces acting on a car that is traveling through this banked curve at its critical velocity?
What force is supplying the centripetal force to keep the car moving in its circular path?
What is the critical velocity of a car traveling through this curve?
If a car were to travel at this same speed through a regular flat curve having this same radius, how large would the coefficient of friction need to be to maintain its contact with the road surface?
Related Documents
Lab:
Labs -
A Physical Pendulum, The Parallel Axis Theorem and A Bit of Calculus
Labs -
Calculation of "g" Using Two Types of Pendulums
Labs -
Conical Pendulums
Labs -
Conical Pendulums
Labs -
Conservation of Energy and Vertical Circles
Labs -
Conservation of Momentum in Two-Dimensions
Labs -
Density of an Unknown Fluid
Labs -
Introductory Simple Pendulums
Labs -
Kepler's 1st and 2nd Laws
Labs -
Loop-the-Loop
Labs -
Mass of a Paper Clip
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Oscillating Springs
Labs -
Roller Coaster, Projectile Motion, and Energy
Labs -
Rotational Inertia
Labs -
Sand Springs
Labs -
Simple Pendulums: Class Data
Labs -
Simple Pendulums: LabPro Data
Labs -
Video LAB: A Gravitron
Labs -
Video LAB: Circular Motion
Labs -
Video LAB: Looping Rollercoaster
Labs -
Water Springs
Resource Lesson:
RL -
A Chart of Common Moments of Inertia
RL -
A Derivation of the Formulas for Centripetal Acceleration
RL -
A Further Look at Angular Momentum
RL -
Center of Mass
RL -
Centripetal Acceleration and Angular Motion
RL -
Conservation of Energy and Springs
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Derivation: Period of a Simple Pendulum
RL -
Discrete Masses: Center of Mass and Moment of Inertia
RL -
Energy Conservation in Simple Pendulums
RL -
Gravitational Energy Wells
RL -
Hinged Board
RL -
Introduction to Angular Momentum
RL -
Kepler's Laws
RL -
LC Circuit
RL -
Magnetic Forces on Particles (Part II)
RL -
Period of a Pendulum
RL -
Rolling and Slipping
RL -
Rotary Motion
RL -
Rotational Dynamics: Pivoting Rods
RL -
Rotational Dynamics: Pulleys
RL -
Rotational Dynamics: Rolling Spheres/Cylinders
RL -
Rotational Equilibrium
RL -
Rotational Kinematics
RL -
Rotational Kinetic Energy
RL -
SHM Equations
RL -
Simple Harmonic Motion
RL -
Springs and Blocks
RL -
Symmetries in Physics
RL -
Tension Cases: Four Special Situations
RL -
The Law of Universal Gravitation
RL -
Thin Rods: Center of Mass
RL -
Thin Rods: Moment of Inertia
RL -
Torque: An Introduction
RL -
Uniform Circular Motion: Centripetal Forces
RL -
Universal Gravitation and Satellites
RL -
Vertical Circles and Non-Uniform Circular Motion
Review:
REV -
Review: Circular Motion and Universal Gravitation
Worksheet:
APP -
Big Al
APP -
Ring Around the Collar
APP -
The Baton Twirler
APP -
The Satellite
APP -
The See-Saw Scene
APP -
The Spring Phling
APP -
Timex
CP -
Center of Gravity
CP -
Centripetal Acceleration
CP -
Centripetal Force
CP -
Satellites: Circular and Elliptical
CP -
Torque Beams
CP -
Torque: Cams and Spools
NT -
Center of Gravity
NT -
Center of Gravity vs Torque
NT -
Circular Orbits
NT -
Falling Sticks
NT -
Pendulum
NT -
Rolling Cans
NT -
Rolling Spool
NT -
Rotating Disk
NT -
Spiral Tube
WS -
Basic Practice with Springs
WS -
Inertial Mass Lab Review Questions
WS -
Introduction to Springs
WS -
Kepler's Laws: Worksheet #1
WS -
Kepler's Laws: Worksheet #2
WS -
Moment Arms
WS -
Moments of Inertia and Angular Momentum
WS -
More Practice with SHM Equations
WS -
Pendulum Lab Review
WS -
Pendulum Lab Review
WS -
Practice: SHM Equations
WS -
Practice: Vertical Circular Motion
WS -
Rotational Kinetic Energy
WS -
SHM Properties
WS -
Static Springs: The Basics
WS -
Torque: Rotational Equilibrium Problems
WS -
Universal Gravitation and Satellites
WS -
Vertical Circular Motion #1
TB -
Basic Torque Problems
TB -
Center of Mass (Discrete Collections)
TB -
Centripetal Acceleration
TB -
Centripetal Force
TB -
Moment of Inertia (Discrete Collections)
TB -
Rotational Kinematics
TB -
Rotational Kinematics #2
PhysicsLAB
Copyright © 1997-2017
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton