PhysicsLAB Review
Review: Circular Motion and Universal Gravitation

Printer Friendly Version
Newton's Three Laws Law of Inertia
Law of Acceleration
Law of Action-Reaction
centripetal force Fc = mac
centripetal acceleration ac = v2/r
tangential velocity v = 2πr/T
v = rω
where ω = 2πrf (frequency in hz)
centripetal acceleration ac = 4π2r/T2
relationship between
period (T) and frequency (f)
f = 1 / T
centripetal acceleration ac = 4π2r f 2
friction f = μN
conical pendulums T cos(θ) = mg
T sin(θ) = Fc = m v2/r
source of centripetal force
for a banked curve
when traveling at critical speed
Fc = N sin(θ)
[remember that N cos(θ) = mg]
critical speed for a banked curve tan(θ) = v2/rg
universal gravitation F = GM1M2/r2
universal gravitation constant 6.67 x 10-11 N m2 / kg2
Kepler's Third Law T2/R3 = 4π2/GMcentral body
a unique constant for every satellite system
gravitational field strength g = G Mcentral body /r2
where r = Rcentral body + h
Kepler's Second Law vARA = vPRP
a satellite's tangential velocity and orbital radius are inversely proportional
Conservation of Energy Σ(PE + KE)before = Σ(PE + KE)after
PE = mgh
KE = ½mv2
kinematics equations s = vo t + ½ at2
vf 2 = vo2 + 2as
vf = vo + at
s = ½ ( vo + vf ) t
range of a projectile R = vH t
 
 
Web Resouces
Resource Lessons
 
 
 
 
Worksheets
 
 
 
 
Labs
 
 
 
Textbook Assignments
 
 
 
NextTime Questions
 
 
AP Essays
 
1984 C1 - gravitron
2002 B2 - conical pendulums
1989 B1 - conical pendulum
1999 B5 - friction and circular motion
2002 C2 - Kepler's Laws
1977 B2 - banked curves
 



 
Related Documents




PhysicsLAB
Copyright © 1997-2017
Catharine H. Colwell
All rights reserved.
Application Programmer
    Mark Acton