Resource Lesson
Famous Experiments: Michelson-Morley
Printer Friendly Version
These two scientists, Albert Michelson and Edward Morley, conducted one of the most important null result experiments in history at Case Western University in 1887. Using an interferometer floating on a pool of mercury, they tried to determine the existence of an ether wind by observing interference patterns between two light beams. One beam traveling with the "ether wind" as the earth orbited the sun, and the other at 90º to the ether wind. If light was a mechanical wave, then the speed of light should vary with the earth's motion through the ether - for example, like a boat traveling up and down stream; sometimes the current increases the boat's relative speed, other time it hinders, or slows, the boat's speed relative to the shore.
The interference fringes produced by the two reflected beams were observed in the telescope. It was found that these fringes did not shift when the table was rotated. That is, the time required to travel one leg of the interferometer never varied with the time required to travel its normal counterpart. They NEVER got a changing interference pattern.
The experiment refuted the hypothesis that the earth is in motion relative to a "luminiferous ether" through which light propagates. The null results of the experiment indicated that the speed of light is a constant, independent of its direction of propagation. Another consequence of their experiment was the building skepticism in the existence of the ether - scientists no longer believed that light was a mechanical wave.
In 1907, Albert Michelson was awarded the
Nobel Prize in Physics
for his work in spectroscopy and precision optical instruments.
Related Documents
Lab:
Labs -
A Photoelectric Effect Analogy
Labs -
Basic Particles
Labs -
Experimental Radius
Labs -
Hydrogen Spectrum
Labs -
Hydrogen Spectrum
Labs -
Mass of an Electron
Labs -
Mass of the Top Quark
Labs -
Mirror Symmetry
Labs -
Quantized Mass
Labs -
Radiation of a Metal Cylinder
Labs -
Using Young's Equation - Wavelength of a Helium-Neon Laser
Resource Lesson:
RL -
An Outline: Dual Nature of Light and Matter
RL -
Atomic Models and Spectra
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Energy-Level Diagrams
RL -
Excitation
RL -
Famous Discoveries and Experiments
RL -
Famous Discoveries: Bohr Model
RL -
Famous Discoveries: de Broglie Matter Waves
RL -
Famous Discoveries: The Franck-Hertz Experiment
RL -
Famous Discoveries: The Photoelectric Effect
RL -
Famous Experiments: Davisson-Germer
RL -
Famous Experiments: Millikan's Oil Drop
RL -
Famous Experiments: The Compton Effect
RL -
Famous Experiments: The Discovery of the Neutron
RL -
Nuclear Reaction
RL -
What is Mass?
REV -
Orbitals
Worksheet:
APP -
Eternally Bohring
APP -
Nuclear Flu
APP -
The Science Fair
APP -
What's My Line
CP -
Atomic Nature of Matter
CP -
Atomic Nucleus and Radioactivity
CP -
Balancing Nuclear Equations
CP -
Natural Transmutations
CP -
Nuclear Fission and Fusion
CP -
Radioactive Half Life
CP -
The Atom and the Quantum
NT -
Atomic Number
NT -
Beta Decay
NT -
Binding Energy
NT -
Black Holes
NT -
Electrostatic Attraction
NT -
General Relativity
NT -
Helium Balloons
NT -
Hot Springs
NT -
Hydrogen Atom
NT -
Hydrogen Fusion
NT -
Nuclear Equations
NT -
Photoelectric Effect
NT -
Radiant Energy
NT -
Radioactive Cookies
NT -
The Ax Handle
NT -
Uranium Decay
NT -
Uranium Fission
RL -
Chapter 3: Electrons
WS -
Atomic Models and Spectra
WS -
Energy Level Diagrams
WS -
Parallel Reading - The Atom
WS -
Rotational and Reflection Symmetries
WS -
Standard Model: Particles and Forces
TB -
38A: Atomic Physics
TB -
Half-Life Properties
PhysicsLAB
Copyright © 1997-2023
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton