Lab
Video Lab: Falling Coffee Filters
Printer Friendly Version
This lab is based on a
Direct Measurement Video
called
Falling Coffee Filters
released on the
Science Education Research Center
(SERC) website. The copyright for this video belongs to Independent School District 197 in Mendota Heights MN. The project is partially funded by a National Science Foundation Grant (#1245268) awarded in September 2013.
The following lab directions were designed for use in my Honors Physics I class and only represent one method of analyzing the data provided in the video.
Refer to the following information for the next six questions.
In the table provided below, input the mass of each group of coffee filters. Then, starting when the base of each group reaches the 20-cm line, start a stop watch (find it by clicking on the three horizontal lines) and record how much time is needed for the base of the filters to each the 50-cm line, then the time to travel from the 50-cm line to the 80-cm line, and then the time to travel from the 80-cm line to the 110-cm line, and finally the time to travel from the 110-cm line to the 140-cm line.
Group
Mass (g)
Time between
20 and 50-cm
Time between
50 and 80-cm
Time between
80 and 110-cm
Time between
110 and 140
1
2
3
4
5
6
By referring to the time values for the third group, how do you know that the filters were still accelerating during the intervals 20-50 cm and 50-80 cm?
Refer to the following information for the next six questions.
In the next table, calculate the average speed of each group of filters for the final two 30-cm intervals. You should notice that in each row, these are nearly duplicate values. These values represent the terminal velocity of each group. Each group of filters will reach a terminal velocity (speed) when the air resistance encountered by the filters equals the weight of the filters. This is an example of a projectile NOT being in freefall.
average speed
80-110
average speed 110-140
average terminal velocity
(average terminal velocity)
^{2}
(cm/sec)
(cm/sec)
(m/sec)
(m/sec)
^{2}
1
2
3
4
5
6
What is the acceleration of any group of filters once they reach terminal velocity?
Refer to the following information for the next three questions.
Next plot a graph of
(Terminal Velocity)
^{2}
vs Mass
and determine the equation of its line. The slope of your line of best fit will represent the drag constant for any collection of coffee filters which have the same shape and falling through the same density of the air. You may use EXCEL, and include a printout of your data table and graph. Make sure to give your graph a title, as well as label and scale each axis.
What is the slope of your line?
What is the y-axis intercept of your line?
Use the equation of your line to estimate the terminal speed of of an untested group containing 10 filters.
Related Documents
Lab:
Labs -
2-Meter Stick Readings
Labs -
A Photoelectric Effect Analogy
Labs -
Acceleration Down an Inclined Plane
Labs -
Addition of Forces
Labs -
Ballistic Pendulum: Muzzle Velocity
Labs -
Circumference and Diameter
Labs -
Coefficient of Friction
Labs -
Coefficient of Friction
Labs -
Coefficient of Kinetic Friction (pulley, incline, block)
Labs -
Collision Pendulum: Muzzle Velocity
Labs -
Conservation of Momentum
Labs -
Conservation of Momentum in Two-Dimensions
Labs -
Cookie Sale Problem
Labs -
Density of a Paper Clip
Labs -
Determining the Distance to the Moon
Labs -
Determining the Distance to the Sun
Labs -
Eratosthenes' Measure of the Earth's Circumference
Labs -
Falling Coffee Filters
Labs -
Flow Rates
Labs -
Force Table - Force Vectors in Equilibrium
Labs -
Freefall Mini-Lab: Reaction Times
Labs -
Freefall: Timing a Bouncing Ball
Labs -
Galileo Ramps
Labs -
Gravitational Field Strength
Labs -
Home to School
Labs -
Indirect Measurements: Height by Measuring The Length of a Shadow
Labs -
Indirect Measures: Inscribed Circles
Labs -
Inelastic Collision - Velocity of a Softball
Labs -
Inertial Mass
Labs -
InterState Map
Labs -
Introductory Simple Pendulums
Labs -
LAB: Ramps - Accelerated Motion
Labs -
Lab: Rectangle Measurements
Labs -
Lab: Triangle Measurements
Labs -
LabPro: Newton's 2nd Law
Labs -
LabPro: Uniformly Accelerated Motion
Labs -
Loop-the-Loop
Labs -
Marble Tube Launcher
Labs -
Mass of a Rolling Cart
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Monkey and the Hunter Animation
Labs -
Monkey and the Hunter Screen Captures
Labs -
Projectiles Released at an Angle
Labs -
Quantized Mass
Labs -
Ramps: Sliding vs Rolling
Labs -
Range of a Projectile
Labs -
Relationship Between Tension in a String and Wave Speed
Labs -
Relationship Between Tension in a String and Wave Speed Along the String
Labs -
Roller Coaster, Projectile Motion, and Energy
Labs -
Rube Goldberg Challenge
Labs -
Static Equilibrium Lab
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: LabPro Data for Hooke's Law
Labs -
Target Lab: Ball Bearing Rolling Down an Inclined Plane
Labs -
Terminal Velocity
Labs -
The Size of the Moon
Labs -
The Size of the Sun
Labs -
Video LAB: A Gravitron
Labs -
Video Lab: Ball Bouncing Across a Stage
Labs -
Video LAB: Ball Re-Bounding From a Wall
Labs -
Video Lab: Cart Push #2 and #3
Labs -
Video Lab: Two-Dimensional Projectile Motion
Resource Lesson:
RL -
Accelerated Motion: A Data Analysis Approach
RL -
Accelerated Motion: Velocity-Time Graphs
RL -
Advanced Gravitational Forces
RL -
Air Resistance
RL -
Air Resistance: Terminal Velocity
RL -
Analyzing SVA Graph Combinations
RL -
Average Velocity - A Calculus Approach
RL -
Basic Trigonometry
RL -
Basic Trigonometry Table
RL -
Chase Problems
RL -
Chase Problems: Projectiles
RL -
Comparing Constant Velocity Graphs of Position-Time & Velocity-Time
RL -
Constant Velocity: Position-Time Graphs
RL -
Constant Velocity: Velocity-Time Graphs
RL -
Curve Fitting Patterns
RL -
Derivation of the Kinematics Equations for Uniformly Accelerated Motion
RL -
Derivatives: Instantaneous vs Average Velocities
RL -
Dimensional Analysis
RL -
Directions: Flash Cards
RL -
Forces Acting at an Angle
RL -
Freebody Diagrams
RL -
Freefall: Horizontally Released Projectiles (2D-Motion)
RL -
Freefall: Projectiles in 1-Dimension
RL -
Freefall: Projectiles Released at an Angle (2D-Motion)
RL -
Gravitational Energy Wells
RL -
Inclined Planes
RL -
Inertial vs Gravitational Mass
RL -
Linear Regression and Data Analysis Methods
RL -
Metric Prefixes, Scientific Notation, and Conversions
RL -
Metric System Definitions
RL -
Metric Units of Measurement
RL -
Monkey and the Hunter
RL -
Newton's Laws of Motion
RL -
Non-constant Resistance Forces
RL -
Potential Energy Functions
RL -
Properties of Friction
RL -
Properties of Lines
RL -
Properties of Vectors
RL -
Significant Figures and Scientific Notation
RL -
Springs and Blocks
RL -
Springs: Hooke's Law
RL -
Static Equilibrium
RL -
Summary: Graph Shapes for Constant Velocity
RL -
Summary: Graph Shapes for Uniformly Accelerated Motion
RL -
SVA: Slopes and Area Relationships
RL -
Systems of Bodies
RL -
Tension Cases: Four Special Situations
RL -
The Law of Universal Gravitation
RL -
Universal Gravitation and Satellites
RL -
Universal Gravitation and Weight
RL -
Vector Resultants: Average Velocity
RL -
Vectors and Scalars
RL -
What is Mass?
RL -
Work and Energy
Review:
REV -
Honors Review: Waves and Introductory Skills
REV -
Physics I Review: Waves and Introductory Skills
REV -
Test #1: APC Review Sheet
Worksheet:
APP -
Big Fist
APP -
Family Reunion
APP -
Hackensack
APP -
Puppy Love
APP -
The Antelope
APP -
The Baseball Game
APP -
The Big Mac
APP -
The Box Seat
APP -
The Cemetary
APP -
The Dognapping
APP -
The Golf Game
APP -
The Jogger
APP -
The Pool Game
APP -
The Spring Phling
APP -
War Games
CP -
2D Projectiles
CP -
Action-Reaction #1
CP -
Action-Reaction #2
CP -
Dropped From Rest
CP -
Equilibrium on an Inclined Plane
CP -
Falling and Air Resistance
CP -
Force and Acceleration
CP -
Force and Weight
CP -
Force Vectors and the Parallelogram Rule
CP -
Freebody Diagrams
CP -
Freefall
CP -
Gravitational Interactions
CP -
Incline Places: Force Vector Resultants
CP -
Incline Planes - Force Vector Components
CP -
Inertia
CP -
Inverse Square Relationships
CP -
Mobiles: Rotational Equilibrium
CP -
Net Force
CP -
Newton's Law of Motion: Friction
CP -
Non-Accelerated and Accelerated Motion
CP -
Sailboats: A Vector Application
CP -
Satellites: Circular and Elliptical
CP -
Static Equilibrium
CP -
Tensions and Equilibrium
CP -
Tossed Ball
CP -
Up and Down
CP -
Vectors and Components
CP -
Vectors and Resultants
CP -
Vectors and the Parallelogram Rule
NT -
Acceleration
NT -
Air Resistance #1
NT -
An Apple on a Table
NT -
Apex #1
NT -
Apex #2
NT -
Average Speed
NT -
Back-and-Forth
NT -
Crosswinds
NT -
Falling Rock
NT -
Falling Spheres
NT -
Friction
NT -
Frictionless Pulley
NT -
Gravitation #1
NT -
Head-on Collisions #1
NT -
Head-on Collisions #2
NT -
Headwinds
NT -
Ice Boat
NT -
Monkey Shooter
NT -
Pendulum
NT -
Projectile
NT -
Rotating Disk
NT -
Sailboats #1
NT -
Sailboats #2
NT -
Scale Reading
NT -
Settling
NT -
Skidding Distances
NT -
Spiral Tube
NT -
Tensile Strength
NT -
Terminal Velocity
NT -
Tug of War #1
NT -
Tug of War #2
NT -
Two-block Systems
WS -
Accelerated Motion: Analyzing Velocity-Time Graphs
WS -
Accelerated Motion: Graph Shape Patterns
WS -
Accelerated Motion: Practice with Data Analysis
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Advanced Properties of Freely Falling Bodies #3
WS -
Average Speed and Average Velocity
WS -
Average Speed Drill
WS -
Calculating Force Components
WS -
Calculating Vector Resultants
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Chase Problems #1
WS -
Chase Problems #2
WS -
Chase Problems: Projectiles
WS -
Circumference vs Diameter Lab Review
WS -
Combining Kinematics and Dynamics
WS -
Constant Velocity: Converting Position and Velocity Graphs
WS -
Constant Velocity: Position-Time Graphs #1
WS -
Constant Velocity: Position-Time Graphs #2
WS -
Constant Velocity: Position-Time Graphs #3
WS -
Constant Velocity: Velocity-Time Graphs #1
WS -
Constant Velocity: Velocity-Time Graphs #2
WS -
Constant Velocity: Velocity-Time Graphs #3
WS -
Converting s-t and v-t Graphs
WS -
Data Analysis #1
WS -
Data Analysis #2
WS -
Data Analysis #3
WS -
Data Analysis #4
WS -
Data Analysis #5
WS -
Data Analysis #6
WS -
Data Analysis #7
WS -
Data Analysis #8
WS -
Density of a Paper Clip Lab Review
WS -
Dimensional Analysis
WS -
Distinguishing 2nd and 3rd Law Forces
WS -
Energy Methods: More Practice with Projectiles
WS -
Energy Methods: Projectiles
WS -
Force vs Displacement Graphs
WS -
Frames of Reference
WS -
Freebody Diagrams #1
WS -
Freebody Diagrams #2
WS -
Freebody Diagrams #3
WS -
Freebody Diagrams #4
WS -
Freefall #1
WS -
Freefall #2
WS -
Freefall #3
WS -
Freefall #3 (Honors)
WS -
Graphical Relationships and Curve Fitting
WS -
Horizontally Released Projectiles #1
WS -
Horizontally Released Projectiles #2
WS -
Indirect Measures
WS -
Introduction to Springs
WS -
Kinematics Along With Work/Energy
WS -
Kinematics Equations #1
WS -
Kinematics Equations #2
WS -
Kinematics Equations #3: A Stop Light Story
WS -
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
Mastery Review: Introductory Labs
WS -
Metric Conversions #1
WS -
Metric Conversions #2
WS -
Metric Conversions #3
WS -
Metric Conversions #4
WS -
net F = ma
WS -
Position-Time Graph "Story" Combinations
WS -
Practice: Vertical Circular Motion
WS -
Projectiles Released at an Angle
WS -
Properties of Lines #1
WS -
Properties of Lines #2
WS -
Ropes and Pulleys in Static Equilibrium
WS -
Rotational Kinetic Energy
WS -
Scientific Notation
WS -
Significant Figures and Scientific Notation
WS -
Standard Model: Particles and Forces
WS -
Static Springs: The Basics
WS -
SVA Relationships #1
WS -
SVA Relationships #2
WS -
SVA Relationships #3
WS -
SVA Relationships #4
WS -
SVA Relationships #5
WS -
Vocabulary for Newton's Laws
WS -
Work and Energy Practice: An Assortment of Situations
WS -
Work and Energy Practice: Forces at Angles
TB -
2A: Introduction to Motion
TB -
2B: Average Speed and Average Velocity
TB -
Antiderivatives and Kinematics Functions
TB -
Honors: Average Speed/Velocity
TB -
Kinematics Derivatives
TB -
Projectile Summary
TB -
Projectile Summary
TB -
Projectiles Mixed (Vertical and Horizontal Release)
TB -
Projectiles Released at an Angle
TB -
Set 3A: Projectiles
TB -
Systems of Bodies (including pulleys)
TB -
Work, Power, Kinetic Energy
TB -
Working with Vectors
TB -
Working with Vectors
REV -
Math Pretest for Physics I
Direct Measurement Video Project
Peter Bohacek
Copyright © 2013-2018
All rights reserved.
Used with
permission
.
PhysicsLAB
Lab Implementation
Copyright © 2014-2018
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton