Lab
Terminal Voltage of a Lantern Battery
Printer Friendly Version
In this lab you will be using resistors, a multimeter, and a circuit board to discover the internal resistance of a 6-V lantern battery.
Initially, use the voltmeter to record the emf, in volts, of the battery without any electrical loads.
Next, using collections of 100- and 50-ohm resistors, measure and record the voltage lost across 10 different resistance combinations and the current flowing through each one. On your data sheet, neatly draw the circuits for each resistance combination (battery, resistors, voltmeter, ammeter).
Data Table
resistance
voltage
current
trial
(ohms)
(volts)
(amps)
1
2
3
4
5
6
7
8
9
10
Analysis
Once your data has been collected, use EXCEL to graph V vs I.
Theoretically, the voltage lost across each combination of resistors represents the terminal voltage of the battery. This voltage can also be calculated with the equation V =
ε
-
I
r where r is the internal resistance of your battery.
Rearranging the equation for terminal voltage, V =
ε
-
I
r, leads to the expression V = -
I
r +
ε
Consequently, your graph of voltage vs current should have a negative slope whose numerical value represents the internal resistance of the battery while the line's y-axis intercept represents the emf of the battery.
What is the filename for your EXCEL graph?
What is the equation of your line?
What is the percent difference between your measured emf (step 1 above) and the y-axis intercept of your line?
Conclusions
Now we will test your equation with a new combination of resistors. Set up an 11
th
combination of resistors and measure the voltage across them and the current following through them.
resistance
voltage
current
trial
(ohms)
(volts)
(amps)
11
Using the equation, V =
ε
-
I
r, substitute in the internal resistance as the value of the slope of your graph, the emf as the y-axis intercept of your graph, and calculate the voltage that should have theoretically been lost across this final combination of resistors. Give a percent difference between this predicted value and the voltage actually measured.
The theoretical voltage across this new combination should have been
The percent difference between these two voltage values is
Related Documents
Lab:
CP -
Series and Parallel Circuits
Labs -
Parallel and Series Circuits
Labs -
RC Time Constants
Labs -
Resistance and Resistivity
Labs -
Resistance, Gauge, and Resistivity of Copper Wires
Labs -
Telegraph Project
Labs -
Wheatstone Bridge
Resource Lesson:
RL -
A Comparison of RC and RL Circuits
RL -
Ampere's Law
RL -
An Introduction to DC Circuits
RL -
Capacitors and Dielectrics
RL -
Dielectrics: Beyond the Fundamentals
RL -
Electricity and Magnetism Background
RL -
Filaments
RL -
Kirchhoff's Laws: Analyzing Circuits with Two or More Batteries
RL -
Kirchhoff's Laws: Analyzing DC Circuits with Capacitors
RL -
Magnetic Field Along the Axis of a Current Loop
RL -
Magnetism: Current-Carrying Wires
RL -
Meters: Current-Carrying Coils
RL -
Parallel Plate Capacitors
RL -
RC Time Constants
RL -
Torque on a Current-Carrying Loop
Worksheet:
APP -
The Circuit Rider
APP -
The Cycle Shop
CP -
DC Currents
CP -
Electric Power
CP -
Ohm's Law
CP -
Parallel Circuits
CP -
Power Production
CP -
Power Transmission
CP -
RIVP Charts #1
CP -
RIVP Charts #2
CP -
Series Circuits
NT -
Brightness
NT -
Light and Heat
NT -
Parallel Circuit
NT -
Series Circuits
NT -
Shock!
WS -
Capacitors - Connected/Disconnected Batteries
WS -
Combinations of Capacitors
WS -
Introduction to R | I | V | P Charts
WS -
Kirchhoff's Laws: DC Circuits with Capacitors
WS -
Kirchhoff's Laws: Sample Circuit
WS -
Resistance, Wattage, and Brightness
TB -
34A: Electric Current
TB -
35A: Series and Parallel
TB -
Advanced Capacitors
TB -
Basic Capacitors
TB -
Basic DC Circuits
TB -
Multiple-Battery Circuits
TB -
Textbook Set #6: Circuits with Multiple Batteries
PhysicsLAB
Copyright © 1997-2023
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton