AP Free Response Question
2005 C2
Printer Friendly Version
A student is given the set of orbital data for some of the moons of Saturn shown below and is asked to use the data to determine the mass M
_{S}
of Saturn. Assume the orbits of these moons are circular.
(a) Write an algebraic expression for the gravitational force between Saturn and one of its moons.
Use your expression from part (a) and assumption of circular orbits to derive an equation for the orbital period
T
of a moon as a function of its orbital radius
R
.
Which quantities should be graphed to yield a straight line whose slope could be used to determine Saturn's mass?
(d) Complete the data table by calculating the two quantities that you decided should be graphed. Label the top of each column, including units.
(e) Plot the graph on the axes below. Label the axes with the variables and appropriate numbers to indicate the scale.
Using the graph, calculate a value for the mass of Saturn.
Topic Formulas
Description
Published Formula
centripetal acceleration
Hooke's Law
period of a simple pendulum
period of a spring
potential elastic energy
Related Documents
Lab:
Labs -
A Physical Pendulum, The Parallel Axis Theorem and A Bit of Calculus
Labs -
Calculation of "g" Using Two Types of Pendulums
Labs -
Conical Pendulums
Labs -
Conical Pendulums
Labs -
Conservation of Energy and Vertical Circles
Labs -
Gravitational Field Strength
Labs -
Introductory Simple Pendulums
Labs -
Kepler's 1st and 2nd Laws
Labs -
Lab: Triangle Measurements
Labs -
Loop-the-Loop
Labs -
Mars' Lab
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Oscillating Springs
Labs -
Roller Coaster, Projectile Motion, and Energy
Labs -
Sand Springs
Labs -
Simple Pendulums: Class Data
Labs -
Simple Pendulums: LabPro Data
Labs -
Video LAB: A Gravitron
Labs -
Video LAB: Circular Motion
Labs -
Video LAB: Looping Rollercoaster
Labs -
Water Springs
Resource Lesson:
RL -
A Derivation of the Formulas for Centripetal Acceleration
RL -
Advanced Gravitational Forces
RL -
Advanced Satellites
RL -
Centripetal Acceleration and Angular Motion
RL -
Conservation of Energy and Springs
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Derivation: Period of a Simple Pendulum
RL -
Energy Conservation in Simple Pendulums
RL -
Gravitational Energy Wells
RL -
Gravitational Potential Energy
RL -
Kepler's Laws
RL -
LC Circuit
RL -
Magnetic Forces on Particles (Part II)
RL -
Period of a Pendulum
RL -
Rotational Kinematics
RL -
SHM Equations
RL -
Simple Harmonic Motion
RL -
Springs and Blocks
RL -
Symmetries in Physics
RL -
Tension Cases: Four Special Situations
RL -
The Law of Universal Gravitation
RL -
Thin Rods: Moment of Inertia
RL -
Uniform Circular Motion: Centripetal Forces
RL -
Universal Gravitation and Satellites
RL -
Universal Gravitation and Weight
RL -
Vertical Circles and Non-Uniform Circular Motion
Review:
REV -
Review: Circular Motion and Universal Gravitation
Worksheet:
APP -
Big Al
APP -
Ring Around the Collar
APP -
The Satellite
APP -
The Spring Phling
APP -
Timex
CP -
Centripetal Acceleration
CP -
Centripetal Force
CP -
Gravitational Interactions
CP -
Satellites: Circular and Elliptical
NT -
Circular Orbits
NT -
Pendulum
NT -
Rotating Disk
NT -
Spiral Tube
WS -
Advanced Properties of Freely Falling Bodies #3
WS -
Basic Practice with Springs
WS -
Inertial Mass Lab Review Questions
WS -
Introduction to Springs
WS -
Kepler's Laws: Worksheet #1
WS -
Kepler's Laws: Worksheet #2
WS -
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS -
More Practice with SHM Equations
WS -
Parallel Reading - The Atom
WS -
Pendulum Lab Review
WS -
Pendulum Lab Review
WS -
Practice: SHM Equations
WS -
Practice: Uniform Circular Motion
WS -
Practice: Vertical Circular Motion
WS -
SHM Properties
WS -
Standard Model: Particles and Forces
WS -
Static Springs: The Basics
WS -
Universal Gravitation and Satellites
WS -
Vertical Circular Motion #1
TB -
Centripetal Acceleration
TB -
Centripetal Force
CB-ETS
Copyright © 1970-2023
All rights reserved.
Used with
permission
Mainland High School
Daytona Beach, FL 32114