AP Free Response Question
2002 C3 E&M
Printer Friendly Version
Topic Formulas
Description
Published Formula
Ampere's Law
Biot-Savat Law
capacitance
capacitance (dielectric)
capacitors in parallel
capacitors in series
Coulomb's Law
current density
electric current
electric field
electric field strength
electric potential energy
energy stored in a capacitor
energy stored in an inductor
Faraday's Law
force ona current-carrying wire
Gauss' Law
induced emf (inductor)
induced emf (magnetism)
Joule's Law
magnetic field around a current-carrying wire
magnetic field of a solenoid
magnetic flux
magnetic force on a moving charge
motional emf
Ohm's Law
potential due to a collection of point charges
resistance in parallel
resistance in series
resistivity
Related Documents
Lab:
Labs -
Magnetic Field in a Solenoid
Labs -
RC Time Constants
Labs -
Telegraph Project
Resource Lesson:
RL -
A Comparison of RC and RL Circuits
RL -
A Guide to Biot-Savart Law
RL -
A Special Case of Induction
RL -
Dielectrics: Beyond the Fundamentals
RL -
Eddy Currents plus a Lab Simulation
RL -
Electric Field Strength vs Electric Potential
RL -
Electricity and Magnetism Background
RL -
Generators, Motors, Transformers
RL -
Induced Electric Fields
RL -
Induced EMF
RL -
Inductors
RL -
LC Circuit
RL -
Magnetic Field Along the Axis of a Current Loop
RL -
Maxwell's Equations
RL -
Motional EMF
RL -
RL Circuits
RL -
Spherical, Parallel Plate, and Cylindrical Capacitors
RL -
Torque on a Current-Carrying Loop
Review:
REV -
Drill: Induction
Worksheet:
CP -
Induction
CP -
Power Transmission
CP -
Transformers
NT -
Induction Coils
WS -
Induced emf
WS -
Practice with Induced Currents (Changing Areas)
WS -
Practice with Induced Currents (Constant Area)
TB -
Electric Field Strength vs Electric Potential
CB-ETS
Copyright © 1970-2023
All rights reserved.
Used with
permission
Mainland High School
Daytona Beach, FL 32114