 2002 Form B - B1 Printer Friendly Version A 2.0 kg frictionless cart is moving at a constant speed of 3.0 m/s to the right on a horizontal surface, as shown above, when it collides with a second cart of undetermined mass m that is initially at rest. The force F of the collision as a function of time t is shown in the graph below, where t = 0 is the instant of initial contact. As a result of the collision, the second cart acquires a speed of 1.6 m/s to the right. Assume that friction is negligible before, during, and after the collision. (a) Calculate the magnitude and direction of the velocity of the 2.0 kg cart after the collision.

 (b) Calculate the mass m of the second cart.

After the collision, the second cart eventually experiences a ramp, which it traverses with no frictional losses. The graph below shows the speed v of the second cart as a function of time t for the next 5.0 s, where t = 0 is now the instant at which the carts separate. (c) Calculate the acceleration of the cart at t = 3.0 s.

 (d) Calculate the distance traveled by the second cart during the 5.0 s interval after the collision (0 s < t < 5.0 s).

 (e) State whether the ramp goes up or down and calculate the maximum elevation (above or below the initial height) reached by the second cart on the ramp during the 5.0 s interval after the collision (0 s < t < 5.0 s). Topic Formulas Related Documents