AP Free Response Question
1999 B2
Printer Friendly Version
In a television set, electrons are first accelerated from rest through a potential difference in an electron gun. They then pass through deflecting plates before striking the screen.
(a) Determine the potential difference through which the electrons must be accelerated in the electron gun in order to have a speed of 6
.
0 x 10
^{7}
m/sec when they enter the deflecting plates.
The pair of horizontal plates shown below is used to deflect electrons up or down in the television set by placing a potential difference across them. The plates have length 0
.
04 m and separation 0
.
012 m, and the right edge of the plates is 0
.
50 m from the screen. A potential difference of 200 V is applied across the plates, and the electrons are deflected toward the top of the screen. Assume that the electrons enter horizontally midway between the plates with a speed of 6
.
0 x 10
^{7}
m/sec and that fringing effects at the edges of the plates and gravity are negligible.
(b) Which plate in the pair must be at the higher potential for the electrons to be deflected upward? Check the appropriate box below and then justify your answer.
(c) Considering only an electron's motion as it moves through the space between the plates, compute the following.
i. The time required for the electron to move through the plates
ii. The vertical displacement of the electron while it is between the plates
(d) Show why it is a reasonable assumption to neglect gravity in part (c).
(e) Still neglecting gravity, describe the path of the electrons from the time they leave the plates until they strike the screen. State a reason for your answer.
Topic Formulas
Description
Published Formula
capacitance
Coulomb's Law
electric field
electric potential energy
energy stored in a capacitor
friction
gravitational potential energy
Hooke's Law
Newton's 2nd Law
Newton's Law of Universal Gravitation
parallel-plate capacitor
potential and electric field strength
potential due to a collection of point charges
uniform acceleration - displacement and instantaneous velocity
uniform acceleration - instantaneous position
uniform acceleration - instantaneous velocity
Related Documents
Lab:
Labs -
A Photoelectric Effect Analogy
Labs -
Acceleration Down an Inclined Plane
Labs -
Aluminum Foil Parallel Plate Capacitors
Labs -
Ballistic Pendulum: Muzzle Velocity
Labs -
Coefficient of Friction
Labs -
Coefficient of Friction
Labs -
Coefficient of Kinetic Friction (pulley, incline, block)
Labs -
Collision Pendulum: Muzzle Velocity
Labs -
Conservation of Momentum
Labs -
Conservation of Momentum in Two-Dimensions
Labs -
Cookie Sale Problem
Labs -
Electric Field Mapping
Labs -
Electric Field Mapping 2
Labs -
Falling Coffee Filters
Labs -
Flow Rates
Labs -
Force Table - Force Vectors in Equilibrium
Labs -
Freefall Mini-Lab: Reaction Times
Labs -
Freefall: Timing a Bouncing Ball
Labs -
Galileo Ramps
Labs -
Gravitational Field Strength
Labs -
Home to School
Labs -
Inelastic Collision - Velocity of a Softball
Labs -
Inertial Mass
Labs -
InterState Map
Labs -
LAB: Ramps - Accelerated Motion
Labs -
LabPro: Newton's 2nd Law
Labs -
LabPro: Uniformly Accelerated Motion
Labs -
Loop-the-Loop
Labs -
Mass of a Rolling Cart
Labs -
Mass of an Electron
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Monkey and the Hunter Animation
Labs -
Monkey and the Hunter Screen Captures
Labs -
Projectiles Released at an Angle
Labs -
Ramps: Sliding vs Rolling
Labs -
Range of a Projectile
Labs -
RC Time Constants
Labs -
Relationship Between Tension in a String and Wave Speed
Labs -
Relationship Between Tension in a String and Wave Speed Along the String
Labs -
Roller Coaster, Projectile Motion, and Energy
Labs -
Rube Goldberg Challenge
Labs -
Static Equilibrium Lab
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: LabPro Data for Hooke's Law
Labs -
Target Lab: Ball Bearing Rolling Down an Inclined Plane
Labs -
Terminal Velocity
Labs -
Video LAB: A Gravitron
Labs -
Video Lab: Ball Bouncing Across a Stage
Labs -
Video LAB: Ball Re-Bounding From a Wall
Labs -
Video Lab: Cart Push #2 and #3
Labs -
Video Lab: Falling Coffee Filters
Labs -
Video Lab: Two-Dimensional Projectile Motion
Resource Lesson:
RL -
A Comparison of RC and RL Circuits
RL -
Accelerated Motion: A Data Analysis Approach
RL -
Accelerated Motion: Velocity-Time Graphs
RL -
Advanced Gravitational Forces
RL -
Air Resistance
RL -
Air Resistance: Terminal Velocity
RL -
Analyzing SVA Graph Combinations
RL -
Average Velocity - A Calculus Approach
RL -
Capacitors and Dielectrics
RL -
Chase Problems
RL -
Chase Problems: Projectiles
RL -
Comparing Constant Velocity Graphs of Position-Time & Velocity-Time
RL -
Constant Velocity: Position-Time Graphs
RL -
Constant Velocity: Velocity-Time Graphs
RL -
Continuous Charge Distributions: Charged Rods and Rings
RL -
Continuous Charge Distributions: Electric Potential
RL -
Coulomb's Law: Beyond the Fundamentals
RL -
Coulomb's Law: Suspended Spheres
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Derivation of the Kinematics Equations for Uniformly Accelerated Motion
RL -
Derivatives: Instantaneous vs Average Velocities
RL -
Dielectrics: Beyond the Fundamentals
RL -
Directions: Flash Cards
RL -
Electric Field Strength vs Electric Potential
RL -
Electric Fields: Parallel Plates
RL -
Electric Fields: Point Charges
RL -
Electric Potential Energy: Point Charges
RL -
Electric Potential: Point Charges
RL -
Electrostatics Fundamentals
RL -
Famous Experiments: Millikan's Oil Drop
RL -
Forces Acting at an Angle
RL -
Freebody Diagrams
RL -
Freefall: Horizontally Released Projectiles (2D-Motion)
RL -
Freefall: Projectiles in 1-Dimension
RL -
Freefall: Projectiles Released at an Angle (2D-Motion)
RL -
Gauss' Law
RL -
Gravitational Energy Wells
RL -
Inclined Planes
RL -
Inertial vs Gravitational Mass
RL -
LC Circuit
RL -
Monkey and the Hunter
RL -
Newton's Laws of Motion
RL -
Non-constant Resistance Forces
RL -
Parallel Plate Capacitors
RL -
Properties of Friction
RL -
Shells and Conductors
RL -
Spherical, Parallel Plate, and Cylindrical Capacitors
RL -
Springs and Blocks
RL -
Springs: Hooke's Law
RL -
Static Equilibrium
RL -
Summary: Graph Shapes for Constant Velocity
RL -
Summary: Graph Shapes for Uniformly Accelerated Motion
RL -
SVA: Slopes and Area Relationships
RL -
Systems of Bodies
RL -
Tension Cases: Four Special Situations
RL -
The Law of Universal Gravitation
RL -
Universal Gravitation and Satellites
RL -
Universal Gravitation and Weight
RL -
Vector Resultants: Average Velocity
RL -
What is Mass?
RL -
Work and Energy
Review:
REV -
Drill: Electrostatics
REV -
Electrostatics Point Charges Review
REV -
Test #1: APC Review Sheet
Worksheet:
APP -
Big Fist
APP -
Family Reunion
APP -
Hackensack
APP -
The Antelope
APP -
The Baseball Game
APP -
The Big Mac
APP -
The Birthday Cake
APP -
The Box Seat
APP -
The Cemetary
APP -
The Electrostatic Induction
APP -
The Golf Game
APP -
The Jogger
APP -
The Spring Phling
CP -
2D Projectiles
CP -
Action-Reaction #1
CP -
Action-Reaction #2
CP -
Coulomb's Law
CP -
Dropped From Rest
CP -
Electric Potential
CP -
Electrostatics: Induction and Conduction
CP -
Equilibrium on an Inclined Plane
CP -
Falling and Air Resistance
CP -
Force and Acceleration
CP -
Force and Weight
CP -
Force Vectors and the Parallelogram Rule
CP -
Freebody Diagrams
CP -
Freefall
CP -
Gravitational Interactions
CP -
Incline Places: Force Vector Resultants
CP -
Incline Planes - Force Vector Components
CP -
Inertia
CP -
Mobiles: Rotational Equilibrium
CP -
Net Force
CP -
Newton's Law of Motion: Friction
CP -
Non-Accelerated and Accelerated Motion
CP -
Static Equilibrium
CP -
Tensions and Equilibrium
CP -
Tossed Ball
CP -
Up and Down
NT -
Acceleration
NT -
Air Resistance #1
NT -
An Apple on a Table
NT -
Apex #1
NT -
Apex #2
NT -
Average Speed
NT -
Back-and-Forth
NT -
Crosswinds
NT -
Electric Potential vs Electric Potential Energy
NT -
Electrostatic Attraction
NT -
Falling Rock
NT -
Falling Spheres
NT -
Friction
NT -
Frictionless Pulley
NT -
Gravitation #1
NT -
Head-on Collisions #1
NT -
Head-on Collisions #2
NT -
Headwinds
NT -
Ice Boat
NT -
Lightning
NT -
Monkey Shooter
NT -
Pendulum
NT -
Photoelectric Effect
NT -
Potential
NT -
Projectile
NT -
Rotating Disk
NT -
Sailboats #1
NT -
Sailboats #2
NT -
Scale Reading
NT -
Settling
NT -
Skidding Distances
NT -
Spiral Tube
NT -
Tensile Strength
NT -
Terminal Velocity
NT -
Tug of War #1
NT -
Tug of War #2
NT -
Two-block Systems
NT -
Van de Graaff
NT -
Water Stream
WS -
Accelerated Motion: Analyzing Velocity-Time Graphs
WS -
Accelerated Motion: Graph Shape Patterns
WS -
Accelerated Motion: Practice with Data Analysis
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Advanced Properties of Freely Falling Bodies #3
WS -
Average Speed and Average Velocity
WS -
Average Speed Drill
WS -
Calculating Force Components
WS -
Capacitors - Connected/Disconnected Batteries
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Chase Problems #1
WS -
Chase Problems #2
WS -
Chase Problems: Projectiles
WS -
Combinations of Capacitors
WS -
Combining Kinematics and Dynamics
WS -
Constant Velocity: Converting Position and Velocity Graphs
WS -
Constant Velocity: Position-Time Graphs #1
WS -
Constant Velocity: Position-Time Graphs #2
WS -
Constant Velocity: Position-Time Graphs #3
WS -
Constant Velocity: Velocity-Time Graphs #1
WS -
Constant Velocity: Velocity-Time Graphs #2
WS -
Constant Velocity: Velocity-Time Graphs #3
WS -
Converting s-t and v-t Graphs
WS -
Coulomb Force Extra Practice
WS -
Coulomb's Law: Some Practice with Proportions
WS -
Distinguishing 2nd and 3rd Law Forces
WS -
Electric Field Drill: Point Charges
WS -
Electric Fields: Parallel Plates
WS -
Electric Potential Drill: Point Charges
WS -
Electrostatic Forces and Fields: Point Charges
WS -
Electrostatic Vocabulary
WS -
Energy Methods: More Practice with Projectiles
WS -
Energy Methods: Projectiles
WS -
Force vs Displacement Graphs
WS -
Freebody Diagrams #1
WS -
Freebody Diagrams #2
WS -
Freebody Diagrams #3
WS -
Freebody Diagrams #4
WS -
Freefall #1
WS -
Freefall #2
WS -
Freefall #3
WS -
Freefall #3 (Honors)
WS -
Horizontally Released Projectiles #1
WS -
Horizontally Released Projectiles #2
WS -
Introduction to Springs
WS -
Kinematics Along With Work/Energy
WS -
Kinematics Equations #1
WS -
Kinematics Equations #2
WS -
Kinematics Equations #3: A Stop Light Story
WS -
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
net F = ma
WS -
Parallel Reading - The Atom
WS -
Position-Time Graph "Story" Combinations
WS -
Practice: Vertical Circular Motion
WS -
Projectiles Released at an Angle
WS -
Ropes and Pulleys in Static Equilibrium
WS -
Rotational Kinetic Energy
WS -
Standard Model: Particles and Forces
WS -
Static Springs: The Basics
WS -
SVA Relationships #1
WS -
SVA Relationships #2
WS -
SVA Relationships #3
WS -
SVA Relationships #4
WS -
SVA Relationships #5
WS -
Vocabulary for Newton's Laws
WS -
Work and Energy Practice: An Assortment of Situations
WS -
Work and Energy Practice: Forces at Angles
TB -
2A: Introduction to Motion
TB -
2B: Average Speed and Average Velocity
TB -
Advanced Capacitors
TB -
Antiderivatives and Kinematics Functions
TB -
Basic Capacitors
TB -
Electric Field Strength vs Electric Potential
TB -
Honors: Average Speed/Velocity
TB -
Kinematics Derivatives
TB -
Projectile Summary
TB -
Projectile Summary
TB -
Projectiles Mixed (Vertical and Horizontal Release)
TB -
Projectiles Released at an Angle
TB -
Set 3A: Projectiles
TB -
Systems of Bodies (including pulleys)
TB -
Work, Power, Kinetic Energy
CB-ETS
Copyright © 1970-2023
All rights reserved.
Used with
permission
Mainland High School
Daytona Beach, FL 32114