AP Free Response Question
1999 B1
Printer Friendly Version
The Sojourner rover vehicle shown in the sketch above was used to explore the surface of Mars as part of the Pathfinder mission in 1997. Use the data in the tables below to answer the questions that follow.
(a) Determine the acceleration due to gravity at the surface of Mars in terms of g, the acceleration due to gravity at the surface of Earth.
(b) Calculate Sojourner's weight on the surface of Mars.
(c) Assume that when leaving the Pathfinder spacecraft Sojourner rolls down a ramp inclined at 20
o
to the horizontal. The ramp must be lightweight but strong enough to support Sojourner. Calculate the minimum normal force that must be supplied by the ramp.
(d) What is the net force on Sojourner as it travels across the Martian surface at constant velocity? Justify your answer.
(e) Determine the maximum distance that Sojourner can travel on a horizontal Martian surface using its stored energy.
(f) Suppose that 0
.
010% of the power for driving is expended against atmospheric drag as Sojourner travels on the Martian surface. Calculate the magnitude of the drag force.
Topic Formulas
Description
Published Formula
elastic potential energy
friction
gravitational potential energy
Hooke's Law
kinetic energy
Newton's 2nd Law
Newton's Law of Universal Gravitation
potential energy
power
power
work
Related Documents
Lab:
Labs -
A Battering Ram
Labs -
A Photoelectric Effect Analogy
Labs -
Air Track Collisions
Labs -
Ballistic Pendulum
Labs -
Ballistic Pendulum: Muzzle Velocity
Labs -
Bouncing Steel Spheres
Labs -
Coefficient of Friction
Labs -
Coefficient of Friction
Labs -
Coefficient of Kinetic Friction (pulley, incline, block)
Labs -
Collision Pendulum: Muzzle Velocity
Labs -
Conservation of Energy and Vertical Circles
Labs -
Conservation of Momentum in Two-Dimensions
Labs -
Falling Coffee Filters
Labs -
Force Table - Force Vectors in Equilibrium
Labs -
Gravitational Field Strength
Labs -
Inelastic Collision - Velocity of a Softball
Labs -
Inertial Mass
Labs -
Kepler's 1st and 2nd Laws
Labs -
Lab: Triangle Measurements
Labs -
LabPro: Newton's 2nd Law
Labs -
Loop-the-Loop
Labs -
Mars' Lab
Labs -
Mass of a Rolling Cart
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Ramps: Sliding vs Rolling
Labs -
Relationship Between Tension in a String and Wave Speed
Labs -
Relationship Between Tension in a String and Wave Speed Along the String
Labs -
Roller Coaster, Projectile Motion, and Energy
Labs -
Rotational Inertia
Labs -
Rube Goldberg Challenge
Labs -
Spring Carts
Labs -
Static Equilibrium Lab
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: LabPro Data for Hooke's Law
Labs -
Target Lab: Ball Bearing Rolling Down an Inclined Plane
Labs -
Terminal Velocity
Labs -
Video LAB: A Gravitron
Labs -
Video LAB: Ball Re-Bounding From a Wall
Labs -
Video Lab: Blowdart Colliding with Cart
Labs -
Video LAB: Circular Motion
Labs -
Video Lab: Falling Coffee Filters
Labs -
Video Lab: M&M Collides with Pop Can
Labs -
Video Lab: Marble Collides with Ballistic Pendulum
Resource Lesson:
RL -
Advanced Gravitational Forces
RL -
Advanced Satellites
RL -
Air Resistance
RL -
Air Resistance: Terminal Velocity
RL -
APC: Work Notation
RL -
Conservation of Energy and Springs
RL -
Energy Conservation in Simple Pendulums
RL -
Forces Acting at an Angle
RL -
Freebody Diagrams
RL -
Gravitational Energy Wells
RL -
Gravitational Potential Energy
RL -
Inclined Planes
RL -
Inertial vs Gravitational Mass
RL -
Mechanical Energy
RL -
Momentum and Energy
RL -
Newton's Laws of Motion
RL -
Non-constant Resistance Forces
RL -
Potential Energy Functions
RL -
Principal of Least Action
RL -
Properties of Friction
RL -
Rotational Dynamics: Pivoting Rods
RL -
Rotational Kinetic Energy
RL -
Springs and Blocks
RL -
Springs: Hooke's Law
RL -
Static Equilibrium
RL -
Symmetries in Physics
RL -
Systems of Bodies
RL -
Tension Cases: Four Special Situations
RL -
The Law of Universal Gravitation
RL -
Universal Gravitation and Satellites
RL -
Universal Gravitation and Weight
RL -
What is Mass?
RL -
Work
RL -
Work and Energy
Review:
REV -
Review: Circular Motion and Universal Gravitation
Worksheet:
APP -
Big Fist
APP -
Family Reunion
APP -
The Antelope
APP -
The Box Seat
APP -
The Jogger
APP -
The Pepsi Challenge
APP -
The Pet Rock
APP -
The Pool Game
CP -
Action-Reaction #1
CP -
Action-Reaction #2
CP -
Conservation of Energy
CP -
Equilibrium on an Inclined Plane
CP -
Falling and Air Resistance
CP -
Force and Acceleration
CP -
Force and Weight
CP -
Force Vectors and the Parallelogram Rule
CP -
Freebody Diagrams
CP -
Gravitational Interactions
CP -
Incline Places: Force Vector Resultants
CP -
Incline Planes - Force Vector Components
CP -
Inertia
CP -
Mobiles: Rotational Equilibrium
CP -
Momentum and Energy
CP -
Momentum and Kinetic Energy
CP -
Net Force
CP -
Newton's Law of Motion: Friction
CP -
Power Production
CP -
Satellites: Circular and Elliptical
CP -
Static Equilibrium
CP -
Tensions and Equilibrium
CP -
Work and Energy
NT -
Acceleration
NT -
Air Resistance #1
NT -
An Apple on a Table
NT -
Apex #1
NT -
Apex #2
NT -
Cliffs
NT -
Elliptical Orbits
NT -
Escape Velocity
NT -
Falling Rock
NT -
Falling Spheres
NT -
Friction
NT -
Frictionless Pulley
NT -
Gravitation #1
NT -
Gravitation #2
NT -
Head-on Collisions #1
NT -
Head-on Collisions #2
NT -
Ice Boat
NT -
Ramps
NT -
Rotating Disk
NT -
Sailboats #1
NT -
Sailboats #2
NT -
Satellite Positions
NT -
Scale Reading
NT -
Settling
NT -
Skidding Distances
NT -
Spiral Tube
NT -
Tensile Strength
NT -
Terminal Velocity
NT -
Tug of War #1
NT -
Tug of War #2
NT -
Two-block Systems
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Advanced Properties of Freely Falling Bodies #3
WS -
Calculating Force Components
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Combining Kinematics and Dynamics
WS -
Distinguishing 2nd and 3rd Law Forces
WS -
Energy Methods: More Practice with Projectiles
WS -
Energy Methods: Projectiles
WS -
Energy/Work Vocabulary
WS -
Force vs Displacement Graphs
WS -
Freebody Diagrams #1
WS -
Freebody Diagrams #2
WS -
Freebody Diagrams #3
WS -
Freebody Diagrams #4
WS -
Introduction to Springs
WS -
Kepler's Laws: Worksheet #1
WS -
Kepler's Laws: Worksheet #2
WS -
Kinematics Along With Work/Energy
WS -
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
net F = ma
WS -
Parallel Reading - The Atom
WS -
Potential Energy Functions
WS -
Practice: Momentum and Energy #1
WS -
Practice: Momentum and Energy #2
WS -
Practice: Vertical Circular Motion
WS -
Ropes and Pulleys in Static Equilibrium
WS -
Rotational Kinetic Energy
WS -
Standard Model: Particles and Forces
WS -
Static Springs: The Basics
WS -
Universal Gravitation and Satellites
WS -
Vocabulary for Newton's Laws
WS -
Work and Energy Practice: An Assortment of Situations
WS -
Work and Energy Practice: Forces at Angles
TB -
Systems of Bodies (including pulleys)
TB -
Work, Power, Kinetic Energy
CB-ETS
Copyright © 1970-2023
All rights reserved.
Used with
permission
Mainland High School
Daytona Beach, FL 32114